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SUMMARY
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Task II of the program "The Performance of a Customized Multilayer Insulation

(MLI)" consisted of the design, fabrication and assembly of the test facility hardware.

A schematic of the major, assembled system components including the thermal

payload simulator and the modified cryoshroud is shown in Figure S-1. A tank back

pressure control device designed to maintain a constant liquid boiling point during
the thermal evaluation of the multilayer insulation (Task V) is also a major component

of the test system. Auxiliary hardware to operate the test apparatus was designed

and fabricated.

TItEI_IAL PAYLOAD SIMULATOR (TPS)

The thermal payload simulator was designed and fabricated to provide a constant

temperature surface in the range of 20.5 to 417K (37 to 750R) for the insulated tank
to view. It consists of a 1.83m (72 in) diameter 0. 953 cm (0. 375 in) thick, highly

polished aluminum disc. An emissivity of 0.03 was measured utilizing the Lion
emissometer Model 25 B-7. The thermal payload simulator is cooled by liquid

hydrogen flowing through circumferential, alum[r_m coils. The TPS heaters were

designed for an operating range of 0.01 to 55 watts. Due to the radially nonuniform

heat load on the TPS, individual heaters were mounted in the inner, mid and outer

zone.

H

H

H

CRYOSIIROUD ASSEMBLY MODIFICATION

The objective of the modification of the NASA/LeRC furnished cryoshroud, 2.44 m

(8.0 ft) in diameter, was to establish a low temperature black body cavity while

limiting liqutd hydrogen usage to a minimum feasible rate. The modification of the

cryoshroud was performed in six subtasks:

i. Cryoshroud shell modification

2. Cryoshroud thermal analysis

3. Cryoshroud baffle design and fabrication

4. Thermal payload simulator and baffle positioning mechanism design and

fabrication

5. Guard tank design and fabrication

6. Assembly of the cryoshroud components

The cryoshroud shell modification consisted of reworking the top cover to accommodate

the guard tank, removal of the existing baffles and preparing the bottom cover for the

baffle positioning mechanism. An analysis was performed to determine the number

and location of the liquid hydrogen cooled baffles requirz_ to intercept the thermal

.......... T - _ ......
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radiation within the eryoshroud. The analysis revealed that three baffles are required,

one fixed baffle located at the test tank equator, one baffle in the same plane as the

thermal payload simulator and one baffle between the thermal payload simulator ,and

fLxed baffle. The b',fffle structUre is a sandwich consisting of a flat plate

with cooling coils welded to its upper surface as the main structural element and

honeycomb bonded to one or both of the surfaces. The lower two baffles and the

ther-mal payload simulator are designed to move together. The bottom baffle remains

in the same plane with the payload simulator as it is positioned by the jack screw
mechanism.

All lines going to the test tank pass through the 60.96 cm (24 in) diameter liquid

hydrog'en guard tank as shown in Figure S-1 in order to prevent entry of extraneous

heat to the test tank. All instrumentation lines into the test tank are passed through
the vent line.

The assembly sequence of the modified cryoshroud was as follows:

1. Attaclm_ent of the guard tank to the shroud top.

2. Mating of the test tank to the guard lank/shroud top assembly.
3. _ Mating of the b,'fffle assembly to the shroud-side.

4. Installation of tlle multilayer insulation on the guard and test tank asse:r, bly.

5. Instrumentation of tank/baffle/shroud and thermal payload simulator.

6. Mating of thermal payload simulator to the baffle/shroud assembly.
7. Installation of the insulation on the bottom of the TPS.

8. Mating of shroud bottom to TPS/ba_ffle assembly/shroud assembly.

9. Joining of test tank to the shroud assembly.

10. Installation of the test assembly into the vacuum chamber,

11. Installation of the baffle positioning jack screws.

12. Installation of the MLI on the outside of the cryoshroud assembly.

Before installing the test tank all inten3r surfaces including cryoshroud, baffles, and

attachment hardware viewing the test package were painted with 3M "Nextel" Black

Velvet paint to achieve the highest emissivity possible. Single and double Conoseals

were used fc._" tubing joints, where welding was not possible. Single Conoseals w,_re

utilized for stainless steel joints while double Conoseals were applied for b_-metal
joints.

PRESSURE CONTROL SYSTEMS

Back pressure control devices are used for both the test tank and the guard tank to

maintain a constant liquid boiling point, The back pressure of the test tank is

controlled within ±1.38 N/m2 (±0. 0002 psia) of the set point. The MKS Baratron

Differential Capacitance Manometer senses very small pressure variations relative

to the absolute pressure of a fixed volume of gas maintained at a constant temperature.
The output of this instrument is fed to a controller which activates one of two valves

xiii



in the vent line to control the tank pressure within the desired tolerm, ce. The NBS

Barostat is used to control the pressure of the guard tank at ±13.8 N/m 2 (±0. 002 psi).

AUXILIARY ttARDWARE

Design and fabrication of auxiliary hardware was required to support the test operation.

These systems include LH2 fill and drain and vent lines for the test tank and guard

tank, the LH 2 supply and recovery system for the cryoshroud, baffles and payload

simulator. Welding and silver brazing was used as the principal r_eans of joining

fluid system components inside the chmnber in addition to the Conoseals. All

components were individually leak checked. After assembly and installation of the

test tank into the vacuum chamber a complete section by section leak check was

performed and repairs made as necessary. A 1500 gallon tank is used to supply liquid

hydrogen to all systems. The supply tank is supplied from the 13,000 gallon site

storage tank and the 1,000 gallon recovery tank.

An electric heater installed in the test tank is used to supply a known heat input

to the test tank during the null test (Task V of contract).

xiv
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This program rel:_o_ covers the work performed under task 11 of NASA contract _

I
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NAS3-17756, "Thermal Performance of a Cus_)mized Multilayer Insulation (MLI)."

The m,'t]or objective of the total progra,,_ is to build up a test facility anti

to design, fabricate, a_d experimentally evalaate the _hermal performance
of a selected, customized MLI system. NASA/LeRC provided the basic design of

the ML[ configuration to be tested, the test tm_k to be insulated, and the cryoshroud

for simulating a deep space environment. The test tank was modified in Task [

(Reference 3-2) to establish the required smooth spherical contour over most of _m

tank surface area. Task H is the design aud fabrication of the Test Facility Hardware.

_Iultilayer insulation systems for the thermal payload simulator and test tank were

designed and fabricated during task [[[ and [¥, (Ref. 4-2). Task V is the experimental

evaluation of the multilayer insulation system.
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_L_ THERMALPAYLOADSIMULATOR
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The purpose of the thermal payload simulator (TPS) is to provide a constant tempera-

ture surface for the insulated 1.52 m(60 in) tank to view (Figure S-l). The TPS

configuration consists of a 1.83 m (72 in) dia. aluminum plate supported by the

cryoshroud assembly. A schematic of the payload simulator is shown in Figure 2-1.

2.1 THERMAL REQUIREMENTS

[J

]

s_

J

1

I

The following provisic';_s were incorporated in the design of the TPS to meet the

thermal conditions daring the Null test, the _ermal testing of the tm_k installed

system and thermal testing of the customized MLI configuration:

Ii Provisions for establish Lng and main_aining any uniform steady-state

temperature in the range of 20.5 t_o 417K (37 to 750R) over tho surface

of the payload simulator.

2. Provlsious for varying the tank-payload simulator spacing to any value

between 15.24 cm (6 in) and 45.72 cm (18 in).

3. Surface v;ewing the tank must be fiat and free of penetrations.

4. Total hemispherical emittauce less than 0.04.

The temperature, < 27.8K (50R) required during the test operation _s achieved by

circulating LH 2 through cooling coils welded to the boredom surface of the alumimm

plate. Since the TPS is completely surrounded by a LH 2 cold wall, two coils (Figure

2-1) will reduce the plate temperature below the required 27.8K (50R) in less than an

ho-_r. During the thermal tests electrm heaters are used to produce the required

surface temperatures. The highest test temperature required is 389K (700R), however,

the maximum heat load of approximately 58.6W (200 Btu per hour) will be at 289K

(520R) during the tank thermal test without the insulation on the plate. Assuming a
103.8 W/mK (60 Btu/hr-ft I_ ) thermal conductivity for _he alumirnm plate, a heater

element spacing of 15.2 cm (6 in) produces a temperature variation less than 0.055K

(0.1R) at the maximum heat iJad. There should be no circumferential variation in the

normal thermal flux. However, there will be a radial variation due to f_,e shape of
the tank bottom and edge loadh_g by the cryoshroud and baffles. This is corrected

by dividing the heater into suitable anmlar sections, which are independently controlled

as shown in Figure 2-1.

2-1
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Figure 2-1. ThermaI Payload Simulator Schematic

The inner edge of the lower baffle next to the simulator is shielded hy three layers of

aluminized Mylar to reduce the thermal load on the outer heater bali. Further

theI_nal protection for the simulator la provided by a 10-layer aluminized Mylar

insulation blanket placed between the simulator and the bottom of the shroud.

The ._imulator is positioned :flong with the lower baffle by moving the TPS adjustment

mechanism (Figure S-1). This baffle is moved by three j_¢kserews which are

co_ltrollcd from outside the chamber. A linear displacement transducer is used to

determine the platTorm position, Positioning accuracy is _:0.25 cm (0. i in).

2.2 TPS Design and Fabric_ion

The TPS design configuration ts presented in Figure 2-2. The base plate consists of

a disk 0.953 em (0.375 in) thick and 1.83 m (72 in) in diameter, it was fabricated from

a highly polished 6061-T-6 Alclad aluminum material. There are no penetrations

on the sul"face facing the tank, An emissivity of 0,03 was measured by a Lion

emissometer Model 25B-7. During installation of the cooling coils and electrical

heaters the polished surface was protected with a strippable plastic film, called

Spraylab, which could be easily removed after inst211ation of all components.

2.2.1 _0OLING CQ_ The cooling coils were designed and fabricated utilizing

1.90 cm (0.75 in) O.D. × 0. 152 cm (0,060 in) thick, 6061-T6 aluminum tubing. The

2-2
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eimumferential coils were welded in place as shown in Figure 2-2. Welds, 2.54 cm

(1.0 in) long, spaced at 2.54 cm (1.0 in) were applied on alternate sides of the tubing

to ensure good he_ conduction between the LH 2 tubing and the TPS plate. Radial

feed lines were not fastened to the plate to minimize thermal nonuniformity clrcumferen-

tlally. The tubing loop was leak checked with gaseous helium and a helium mass spec-

trometer. It was necessary to replace a welded portion of the LH 2 tubing, after a
leakage problem could not be resolved. The replacemezlt section was re-checked and

found to be free of any leakage.

2.2.2 ELECTRICAL tlEATERS. The heat load on the plate at equilibrium tempera-

ture was expected to range from 0.01 to 55 watts. To improve the reliability each

of the heater rings consists of one high power and one low power heater. Each heater

was equipped with two parallel elements.

Due to the radially nonuniform heat load on the TPS, the heaters were divided into

three anmfiar zones: 1) an inner zone consisting of three inner rings connected In

series; 2) a mid zone consisting of two rings connected in series, and 3) an outer zone

consisting of the outer ring. For versatility, each he2Aer element lead wire was

extended individually to the outside of the chamber to facilitate regrouping if necessary.
The heater design connections are shown in Fia'ure 2-2 and 2-3 .

|

l

Inner Zone

H I H 2 H 3

-_ _-. - . .-__ .'__

Mid Zone

-L-_XA]_¢_

II 4 H 5

Outer Zone

-'v%%/V'--- Low power heater

..,_. power heater

Pov,'e r

_apply
0-70 Vdc

@ 15 Amns

POV;__ r

Supply

0-70 Vde

@ 15 Amps

Power

_ppl.v
0-70 \'dc

@ 15 Amps

0

Figure 2-3. Sketch of Electrical Heater Com_ections
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The material selection to construct the electrical heaters was based pr£marlly on the

required temperature limits of 20.5K (37R) and 417K (750R) with second consideration

being thermal conductivity. The heater was cons'_ructed utilizing 0. 0254 cm (0. 010 in)

lnvar and 0.058 em (0. 020 in) thick stainless steel wires. The Teflon film between the

TPS and heater wires was required for electrical insulation. The Teflon film behind the

heater wire reduces the area loading on the silicone rubber foam while limiting the

force on the wire to prevent its cutting through the insulating Teflon. The silicone

fo,-m_ is a resilia_ filler to provide good mechanical cdl_act between the heater and

the TPS and some thermal insulation between the h_'l_r and the alumimm back-up

strip. RTV 560 potting compound is used primarily for thermal conductivity and also

as a mechanical bond. A photo of the completed thermal payload simulator in its

protective holding fixture is shown in Figure 2-4.
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CRYOSIIROUD ASSEMBLY MODIFICATION

The modification of the cryoshroud was initiated by evaluating the design of the

cryoshroud assembly which was furnished by the NASA LeRC to sinmlate the environ-

ment of deep space. The cryoshroud was required to be cooled by liquid hydrogen
and to have a high surface emittanee on those surfaces viewing the test

tartly. The objective of the modification was to establish as near a low temperature

black body cavity as feasible, and minimize cryoshroud hydrogen usage.

The eryoshroud assembly modification effort was subdivided into five tasks:

1. Cryoshroud modification

2. Cryoshroud baffle thermal analysis

3. Cryoshroud baffle design and fabrication

4. Guard tank desi_ and fabrication

5. Thermal payload simulator and baffle positioning mechanism d,.mign and
fabrication

6. Assembly of the cryoshroud components

3.1 CRYOSHROUD MODIFICATION

The eryoshroud is a 2.44 m (8 ft) diameter by 2.44 m (8 ft) high cylindl__cal shell

with top an_ 1 bottom covers. Cooling coils are welded to all surfaces. A schematic

of the eryoshroud is shown in Figure S-1. The material used in the construction of the

cryoshroud is principally 6061 ahm_inum alloy. The basic method of construction is

,a framework of 7.62 x 7.62 x 0;63 cm (3 × 3 x 0.25 in) angle and 7.62 x 0.63 em

(3 x 0.25 in) bar stock material with 0.32 cm (1/8 in) sheet covering. The top cover

has a heavy 5.08 cm (2 in) thick mounting ring attached by a 63.5 cm (25 in) diameter

25.4 cm (10 in) high sleeve. The ring is braced by four radial struts. The cylindrical

shell has eight baffle gnides which also provide support for the sidewall structure.

The cryoshroud is mounted in the vacuum chamber on pads under the bottom cover

rather them supported from the mounting ring in the top. Thus the radial strut load

is compression rather thm_ tension. Aluminum angles 7.62 x 7.62 x 0.63 cm (3 x 3

x 0.25 in) are attached to each side of each radi_ strut (Figure 3-1). The top cover

(NASA Drawing CR 62191) was also modified by the addition of a 7.62 (3 in) hole for
the baffle vent line to exit the cryoshroud.

The bottom cover (NASA Drawing CF 621.922) was modified by the addition of holes

for cooling tubes _md for the payload simulator lifting jack screws. The new bottom

3-1
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cover drawing is presented in Figure 3-2. The only modification to the cylindrical

sidewalls was the removal of the existing baffles and replacement of the joints between

the upper and lower cooling tubes, Figure 3-3. "Double-Seal" Conoseal fittings were

attached to the cryoshroud cooling tube fill and vent lines.

H

U

U

l

l

U

The entire inner surface of the cryoshroud was repainted with low outgassing 3M

Nextel Velvet (3M 401-CI0) to achieve as high an emissivity as possible.

3.2 CRYOSHROUD BAFFLE THERMAL ANALYSIS

The major objective of the cryoshroud thermal analysis was to determine the number

m_d location of the liquid hydrogen cooled baffles,required to intercept and absorb both

direct and reflected thermal radiation within the czs, oshroud. The location of the

baffles must be thelmaally acceptable for all three "Tank-TPS" spacings (Section 2.1),

required during the testing of the customized MLI (Task V).

3.2.1 THERMAL ANALYSIS. An analysis was performed on the radiation inLer-

change and heat transfer inside the lower half of the cryoshroud with the thermal

payload simulator and insulated cryogenic tank. Two basic radiation interchange

models were considered. The reflecting node model is a segment of the axially

symmetric installation with boundary nodes having zero emissivity, Figure 3-4.

The complete node model, Figure 3-5, includes all the radiative surface areas inside

the eryoshroud.

3.2.2 REFLECTING NODE MODEL. The model consists of 19 flat plates and

represents a 1/15 segment (24 °) of the total installation. Since, in actual practice,

the energy exchange will be symmetrical about the vertical tank axis, reflecting

nodes (5, 6, 7, 8, 9, 10) with an emissivity, ¢ = 10 -5, were placed on the sides of

th_ segment section analyzed. The value, _ = 10 -5, was used because the computer

will not operate with a zero value. Use of reflecth_g boundaries reduces the number

of nodes analyzed from 195 to 19 with a corresponding saving in setup and computer

time. The cost oi computing view factors and Script F values for radiation increases

approximately as the 2.5 power of the number of nodes so that minimizing the number

of _odes is significant. It is noted that the node size has been increased from a 1/16

segment to a 1/15 segment in order to reduce the maximum possible number of nodes

in the complete model case to less than 200; a computer program limitation.

Four geometrical configurations were evaluated, (1) open-to-space, (2) the cryoshroud

only, (3) the cryoshroud 7.nd lower baffle, and (4) the cryoshroud and two baffles. The

thermal payload simulator in all cases was at its lowest position since this is the

location where the greatest amount of reflected energy from the shroud/baffle surface

will occur. The emissivity of the thermal payload simulator (node 1) was ETp S = 0.04

and the MLI surface on the tank (nodes 2, 3, 4) was _T = 0.03. The emissivity on the

shroud (nodes 13, 14, 15) and b_ffle'._ (nodes 11, 12 and 16, 17, 18, 19) was varied from

0.85 to 0.96 to simulate different surface coatings.

3-3



I

\
\

/
/

/
/

/
X_

.OZ!

/
/

/
/



i
/

/

I
.,,_-

\

-_,,-, Z-"Ir"_
o \ _o.'-_,_i1 ,

@_;J [_
._ L_ _..<>

_CALE I/t

1-4o_.{,6-?l_toc_/ t_kS V)h_-_GJ_ 50LX

\

E

_,>,/, -<

, Cover

24

_io-#_",.. -'I_.zs

[.Li:____"
I

-1 ,oo1"-

, i'.O01,'%i__._

i,,..... _.,_,_ *_,o ,_,_,0 8-0 CQYO-S_QQUD

I----=--I-=I.............. 1

I 2_ i"<'''" P t.... r--
LI-4

It-

c_

--i

....... _ .................... - ................................................. ,.i-- -"__



38 [ 37

i

Figure 3-3. 81-0" Cryoshroud ModificatiJ



i . 34 ..... I 33

.odification - Cylindricnl Shell

35 _" 34

%

/

/
/

/



I
c_

>
c3

m

S°6

_---TOP BAFFLE

o 14 _ I

I

11 1

_ DOTTOM 13A FFLE "?

THE_.MAL PAYLOAD SI._IULATOr_

Figure 3-4. Reflecting Node Model of Cryoshroud

IllustratingNode Numbers

122-

135

__ IOG-120

_ -
91-

105

"---TO P DAF_'LE

\d i /

_-D'-_ I_._o[-_

61-';5 1-I$ '

BOTTOMB_FFLE

1:'igure 3-5. Complete Node Model of Cryoshroud

Illustrating Node Numbers



n

i
1

I

Li

g!

LJ

H

H

H

I

I

N

:_. 2.:1 COMPI,I.;TE N()DE MODEL. There is some uncertainty in the accuracy of the

thermal model using reflecting boundary nodes. The Gebhart technique (Reference 3-1)

for dctcrn_ining Script F assumes diffuse reflection from all surfaces according to tile

I,ambert cosine law. _vhere:ts specular hemlspherlc_fl reflection is more representative
of the actual ease.

The differences are indeterminate except by generating a complete open model with no

reflecting nodes. Therefore, for (1) the open-to-space mad (2) the cryoshroud with

lower baffle configurations, a complete model analysis was made.

The analysis used the same basic node sizes, Figure 3-5, as the reflecting model with

each individual seoa_ent being 1/15 of the total inst_dlatlon. The directly trm_smitted

and reflected energ-v from each emitting segment to a 1/15 receiving segment was

computed,then the results multiplied by 15 to determine the heat exchange to the entire

circmnfcrential surface. This technique reduced the nuzaxber of nodes actually

:malyzed in the complete model configuration.

3.2.4 FINITE NUMERICAI, APPROXI_IATION. The node models consist entirely of

flat plates to simulate the curved surfaces. The modeled flat plate surface areas and

the actmd cur_'ed surface areas are listed in Table 3-1. The view factors were

cletermined by breakin_ each node into smMler finite elements. The node areas and

elem(mtal breakdown is listed in Table 3-1. The view factors were computed for the

cases of a smaller node to a larger node and the calculated reciprocal used for

interch'mgc from large to small nodes. The view factor pt-ojection was commtted in

finite 5 sweep angle increments. All node sizes and finite element breakdowns were

identical in the reflecting mid complete node cases, therefore view factors within a

se_'mcnt were :also identical. View factors from the payload plate to the three tank
n(_des :_vc given in Table 3-1.

3. "2.5 I_E_I"L'I'S. lleat flow values are plotted in Figure 3-6 for the shroud, c -_ 0.85,

and h_wer baffle, _ 0.9[;, configuration for both the reflecting node mid complete

node models. Emissivity of the fL,:ed top and bottom baffles is also 0.96. The

c,m_idote node model for the case where the emissivities are 1.00, open-to-space, is

also plotted in Fi-,'ure 3-(;. Accurate numerical values of the plotted data arc listed in

"l':d)le 3-2. There is _ difference of almost 60(7_ between the reflect:ng and complete

node models indicating the i'cflecting node model is not a suitable representation of

the actual installation. It is also noted that the heat flow to the shroud and lower

baffle eonfi_n_ration is within approximately 6_, of the open-to-space case. For

ex'unple, at a TPS surface temperature of 500R and a shroud and baffle emissivity

of 0. ,q5 m_d 0.96 respective-ly, the heat flow from the therrnej payload simulator to the

e_Togcnic tm_k is 1. 296 BTU/hr utilizing one baffle between the top baffle and the

bottom baffle. Using the same temperature for the "Open-to-Space" case, the

calculated heat flow is 1. 219 BTU/hr, resulting in a difference of 0. 077 BTU/hr or

3-7
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Table 3-2.

Configuration

Heat rransfer From Thermal l'ayload Simulator to Tank Bottom Hemisphere

Bij × 10-4

Node Node Node

Model Cshroud cbaffle 1 _72 1 - 73 1 - 74

1. Open to Space

2. Shroud-Lower Baffle

3. Shroud-Lewer Baffle

Complete 1.00 1.00 1. t230 5.3513 0. 8165

Complete 0.85 0.96 1. 4526 5. 5456 1. 0702

Reflecting 0. _5 0.96 0.7147 3.2417 1. 1883

Configuration Tp/L = 700 600

Q BTU/hr

500 -t00 300 200

i>

Open tc _-t)ace
Shroud-Lower Baffle

Shroud-Lower Baffle

3.4958 1.8869 0.9099 0.3726 0.1178 0.0232

4.9776 2.6867 1.2956 0.5306 0.1678 0.0330

3.1739 1.7131 0.8261 0.3383 0.1070 0.0211

TTp S = thermal payload simulator temperature (variable)

TT = tank insulation surface temperature, 50R

Q ==15 v Bij (Tp/L 4 - TTk 4) BTU/hr

15 = number model segments

_P/L = payload plate emissivity, 0.04 = = 0. 1713 × I0-8 Stephan-Boltzman

CTk = tank insulation emissivity, 0.03 Bij - A3kj script 3x area

Total

P/L --Tk

7.5908

8.0684

5.1447

{
!

,!

q

1



6.3%. Additional baffles within this narrow band are not justified or practical for

such a small and largely indeterminate gain. The combined accuracy of the

finite element analysis for radiation, the known accuracy of the surface emissivities
and a,/c, and the test measurements are ,also not considered to be within the 6% band.

It was therefore decided to use only one intermediate baffle between the top baffle and

the thermal payload simulator.

3.3 BAFFLE DESIGN AND FABRICATION

The e=dsting internal baffles which were furnished with the cryoshroud by NASA-LeRC

were too small to accommodate the 1.52 m (60 in) diameter test tank. In order to

enlarge this inside diameter it wotfld have been necessary to remove the baffle surface

cooling coil, making it impractical to rework these baffles into the design required for

the test program. Three new annular-shaped liquid hydrogen cooled baffles for

attachment to the iaternal surface of the cryoshroud were designed and fabricated.

3.3.1 BAFFLE LOCATION. The first baffle is located at the test tank equatorial

plane and is rigidly attached to the cryoshroud. It will intercept and prevent thermal

payload simulator radiant energy from entering into the region of the test tank upper

hemisphere (Figure S-I). The lower baffle is aligned with the very top surface of the

thermal payload simulator. This baffle was designed to move as a unit with the TPS.

It will remain in that relationship at all positions of the thermal payload simulator to

prevent back surface radiation emission and TPS-MLI interlayer tunneling radiation

from entering into the tm_k lower hemisphere region. The intermediate baffle is

rigidly connected to the lower baffle. It moves with the lower baffle at a distance of

46.99 cm (18.5 in).

3.3.2 DESIGN. The fundamental baffle stI_acture is a sanctv./ch of annular shape whose

main structural element is a flat, 6061-T-6 alumintan plate, 0. 317 cm (0. 125 in) thick.

The annula c aluminum base plate has 6061-T4 ahm_inum cooling coils welded to its

upper surface. Almninum honeycomb with 0. 318 cm (0. 125 in) cells is bonded with

APCO 1252 urethane adhesive and additionally bolted to one or both surfaces. This

configuration was selected to produce good thermal contacts allowing all baffle surfaces

to attain the same temperature as the cryoshroud walls. The design is presented in

Figures 3-7, 3-8 and 3-9.

The bottom surface of the honeycomb on the bottom baffle has a faccplate bonded to it to

make a sandwich construction for stiffening. Six phenolic blocks arc bolted to the

lower surface of the movable baffle to provide a means of supporting the thermal payload

simulator as well as reducing the load concentration of the baffle positioning mechanism.

This mechanism allows the lower two b'affles to move with respect to the cryoshroud

and the fixed upper baffle, while still maintaining continuous Lit 2 cooling. It cotmists

3-11
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of two cooling tube coils extending around the outside exige of the baffles. One of these

coils is below the lower two movable baffles and tha other coil is between the upper fixed

baffle mid the lowe: two movable baffles (Figures 3-7 _md 3-8}. These two coils extend

and compress like coils in a spring as the two movable baffles are adjusted up and down.

With this method, there is no high spot in the eoolir_ tubes for vapor entrapment. In

the same manner, two coils are used between TI_S and bottom of the crycshroud to

provide movement for the TPS. At the upper baffle, the tube is vented up through a

hole in the cryoshroud upper cover. Eight slotted struts are provided at the outside

edge of both the single upper fixed baffle and of the two lower movable baffles. These

position and guide the baffles as they are mov,_,d in the shroud. "U" clamps lock the

upper b_f-le in position and prevent the lower baffles from falling out during removal
of the thermal payload simulator.

3.3.3 FABRICATION. Prior to fabricating the cryoshroud baffles, a sandwich sample

consisting of 0. 102 cm (0.040 in) thick 6061 aluminum with 1.587 cm (0. 625 in) honey-
comb attached to both sides was immersed in liquid nitrogen for 2 minutes. The

sample was removed from liquid nitrogen and allowed to return to ambient temperature.
This test was repeated 19 times for a total of 20 cycles. Twenty additional tests of the

same kind were conducted using liquid hydrogen. There was no apparent failure of the
joint.

All base plate sections, tubing and honeycomb materials were cut and chemically
cleaned. The tubing was provided with an additional 2.54 cm (1.0 in) wide aluminum

base plate to avoid warping of the 2.41 m (96 in) O.D. annular baffle base plates. Welds

of 2.54 cm (1.0 in) length at 7.62 cm (3 in) centers were applied on each side of the

tube to ensure good heat conduction between tubing and base plates. All liquid hydrogen

tubing was leak checked and repaired as necessary after the welding operation.

Unforeseen distortions of the 0. 102 cm (0.040 in) aluminum baffle base plates were

encountered during welding of the liquid hydrogen tubing onto the baffle sheet material.

Since proper bonding of the honeycomb to the base plates could not be assured under

t]mse circamstanees, the 0. 102 em (0.040 in) thick aluminum plate was replaced by
0.317 cm (0. 125 in) thick plate material. Welding of the tubing to the new baffle shee_

material was completed without distortions. The honeycomb material type AL-1/8-

5052-002P-8.1 perforated, was purchased from tiEXCEL Aerospace Company. This

material was utilized on the lower surface of the upper baffle, on both surfaces o.+ the

intermediate baffle and on the top surface of the lower baffle (Figure 3-9). The

honeycomb material on the lower surfaces of the bottom plate was tlexcel Type AL-

1/'8-5052-002 N-8.1 Non-Perforated. A face plate was bonded to it to n_ake a rigid
sandwich construction for the mova_)le baffle. The plate was cut in sections and

prefitted to blue print dimensions. It was then bonded to the baffle base plate under

vacuum pressure for 18 hours utilizing APCO 1252 ureth:me adhesive. The honey-

comb was additionally bolted to the plate with 6-32 almminum bolts to achieve good
thermal conducts'race and a better mechanical joint.
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J



"L.l BAFFLE AND TtIEllMAL PAYLOAD SIMULATOR POSITIONING MECtlANISM

The thermal performance test of the customized muitllaver insulation during Task V

requlrt:s that the spacing between test ttmk and thermtd l_ayload simulator can be

adjuste(t from 45.72 em (18 in) to 15. 14 em (6 In}. The lower two baffles anti the

thermal payload simulator arc designed to move together; the bottom baffle remaining

In the ,mine plane as the payload simulator as they are adjusted up ,and down. This Is

provided fol' by resting the thermal payload slrnulator on six phenolic blocks bolted to

the bert,am of the lowest baffle and resting three of the phenolic blocks on three 2.5-I

cm (I. (I, in) diameter screw-jacks extending through the bottom of the cryoshroud,

Fig-are S-I. The rotating nuts for the jack screws are fabricated from Teflon. A
bicycle-chain sprocket Is attacb.ed to the Teflon r_t at the bottom of each of the screw-

jacks and all three sprockets are driven simultaneously by a single chain. By changing
chain position on the sprocket, very minute adjustments to thermal payload simulator

heigtlts can be made to level the thermal payload simuhttor during installation. Tim

chain i:_ driven by a small sprocket and h;md crank on a shaft that passes through the

bottom of the eluunber. As a back up to the positioning transducer, the sprocket

tooth ratio and jack screw threads/inch combined, require 166.5 turns of the hand
crank to produce 15.24 cm {6.0 in) of travel.

Drawings of the positioning mechanism with all del_lils are shown in Figures 3-10

through 3-16. The selection of the material for the positioning mechanism parts was
based on low heat transfer considerations.

3.5 GI'ARD TANK DESIGN AND FABRICATION

In order to prevent entry of extraneous heat to the test t:u_k, fluid lines going to the

test tank pass through the liquid hydrogen guard tm_k as shown in FiLnare S-1. The

It,st tank is also suspended from the gaaard tank which is attached to a supoort ring ill
the top cover of the cryosiwoud.

The gnaard t:mk was fabricated from 304 CRESmaterial. Its construction (Figures 3-17

:rod 3-18_ consisted of two formed 60.96 em (24 in) diameter t,'mk heads connected by a

1 I. 22 cm (5. ti in) hi_,h cylinder. The material gauge is 0. 317 em (0. 125 in). A heavy
mounting ring was welded to the top of the guard tank Io transfer loads from the test

tank to the (,ryoshroud structure. Three lugs were wehted to the bottom of the tank at

its periphmT for attaclmmnt of the test tank support stmats (Ref. 3-2).

The test tank fill/drain line and vent line, consisting of 5.08 cm (2.0 in) O. D., 0.09 em

(0.035 in) wall, 30.1 CRES tubing, penetrate the guard tank. Both of these l'nes pass
with a "U" bend through the guard tank to prevent radiation tunneling and to allow for

iher_nml contraction. The guard tank fill and vent lines were fabricated from 1.91 em

10.75 in) o.D. CRES-30,1 tubing. The Instrumentation lines going into the test tank

pa._s into the tank through the vent line. This eliminated _m electrical pass-thru tn
the test tank door and an additional line through the gualxl tank.
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-1, Basic Drawing

-3, Nut (3) - Teflon

-5, \V:_sher (:') - 0.317 cnl (0. 123 !n. i _;0_;1 T(; Aluminum

-7, Angle (12) - 0.317 cm (0.125 in.j 6061 T6 Alunfinum

-9, :\daptcr l{ing(3) - 0.317 cm (0.125 in) 6061 T6 Alumintm_.

-11, Sprocket

-13, Jackscrew (3)- l-g NC, I0.6! cm (IG in)Scrcw

Thread 2.51 cm (I.0 in) Dia Epoxy Fibcrglass

-15, Guide (3) - Tcflon

-17, Anglc (12) - 0.317 cm (0.125) 6061 T¢iAluminum

I

i,: !

i

Figure 3-10. Thermal Payload Simulator and Cryoshroud Baffle Positioning Mechanism
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1"-8 NC SCREiV THREAD

I

1.00

I

_- 1.00 -_
!
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Figure 3-1,1.

Required: 3

Material: Epoxy Flberglsjss

Positioning Mcch,'mism - Jack Screw
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I
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-17 ANGLE
Required: Six (6) each -7 & -17 with x - .35

Six (6) each -7 & -17 with x *' .55

Materl_: 3/4× 3/4 x 3/32 or 1/8 6061T6 Alum Angle

Figure 3-16. Positioning Meehs.nism - Angle
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The electrical harness was fed through a separate tube in the guard tank to provide

good thermal contact and to assure complete heat removal. Bellows (SS-2000-120-

85A, Mini-Flex Corp., Van Nuys, CA) were provided in both the lines between the

test tank and guard tank for ease of installation and to assure that the loads caused

by movement of the test tank were not transmitted through these lines.

3.6 MODIFIED CRYOSHROUD ASSEMBLY

Figure 3-19 shows the assembly of the cryoshroud cover including the fill and vent

lines of the test tank, guard tank, thermal payload simulator, cryoshroud and baffles.

The assembly of the cryoshroud and baffles with the guard tank, test tank, thermal

payload simulator and Baffle/TPS positioning mechanism is presented in Figure 3-20.

3.6.1 ASSEMBLY S_UE_..NC__E. The assembly sequence of all components was as
follows:

1. Mate guard tank to shroud top.

2. Mate test tank to guard tank/shroud top (tank assembly), (Fig. 3-21 to 3-23).

3. Leak check tank assembly.

4. Mate baffles to shroud-side, (Figure 3-24).

5. Temporarily mate tank assembly to shroud-side, adjust test tank supports,
unto ate tank assembly from shroud-side.

6. Install MLI on test tank.

7. Install instrumentation on tank assembly.

8. Add plumbing to baffle/shroud-side assembly and leak check.

9. Install instrumentation on baffle/shroud-side assembly, shroud-bottom and
thermal payload simulator.

10. Mate TPS to baffle/shroud-side assembly.

11. Install MLI on bottom of TPS.

12. Mate shroud-bottom to TPS/baffle/shroud-side assembly (shroud assembly).

13. Add plumbing to shroud assembly and leak check.

14. Mate tank assembly to shroud assembly (test assembly).

15. Place test assembly in chamber and install support legs.

16. Add test assembly plumbing between test assembly and chamber and leak check.

17. Install baffle/TPS jack screw assembly.

18. Install MLI on outside of test assembly.
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Figure 3-22. Assembly of Cryoshroud Cover/Guard Tank and Test Tank, Side View
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P rior to mountinK the baffles on the, c ryosh lxmd. :dl baffle su pl)orts were fabricated

and att;whed to the wall as sho_n in l.'igure 3-9. The baflle cooling coils were

t, xtenmll.v eletmed with l:reon solvent, then leak checked with helimu :rod rot)aired
ItS lloeessll ry.

As shown in l.'lgure 3-20, the kmard tmfl¢ ts supported l'rom the cryoshroud lifting

structure,. This arrm_gement permitted assembly _md Installation of the eryoshroud

cover and test. tank as a unit.

The cryoshroud assembly support consists of (; miearta :rod aluminum legs, bolted to

the eryoshroud :tl_(I resting on the bottom of the vacuum ct_m_ber. The mioal'ta

material is usod to minimize heat trmlsfer.

3.6.2 TIIEIIMAL PAINT REQUIIIEMENTS. After assembly, all interior surfaces

including the ctS'oshroud, baffles, :rod attachment hardware viewing the test package

were completely covered with 3M "Nextel" Black Velvet (3M40 I C 10) paint to achieve

the highest oimssivity pos._ible. This paint is desig_ed for surfaces requiring high

emissivities and low outgassing in a vacuum.

q. 6.3 MI.I liI-:(_UIREMENTS. Multil-tyer radiation shields were used to therm_dly
t) rot ee t:

1. All lines between the test configuration and vacuum chamber wall (10 layers).

"2. The cover of the eryoshroud (10 layers).

3. The _.mar(I tank assembly (10 layers).

1. The "I'I'S from the bottom of cryoshroud (10 layers).

5.
The TPS to re(tuce the thermal load on the outer heater trend (3 layers).

This insulation was attached to the inner diameter of the lower baffle

aasembly.

6. The cryoshroud along the side w:dl, top and bottom (30 layers).

All shiehls were attached to the surfaces t)3, taping or the use of Velcro fasteners.

3. I;.-1 I'IA'ID Tt'BING. Single mad double Conoseals were used for flange and tubing

joints where wekling was not feasible or desirable. Single Conoscals were utilized

re,. stainless steel joints while double Conoseals were applied where a bi-l_ctal (i, e.,

Al • Cres) joint could cause a possible leak. The Conos_|ls :rod Conoseal groove

information were provided by Aeroquip Mammm Corooration. The cryoshroud and

hafflt, filling operation was accomplished through a single fill line at the bottrma p:mel.
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The thern)al payload simulator Ires its own fill _md vent line. The baffle cooling line

is a continuous aluminum tube which m_es a circle around the b_fffle on the lower

side (not attached), goes through the movable baffle plate and makes a double circuit

on the upper surface of the movable baffle. It continues with a spiral around the

cryoshroud from the lower movable baffle to the fixed baffle. The coil then exits

through a hole in the shroud. The Conoseal flanges, tubing, joints and gasketsused

for the eryoshroud assembly are shown in Table 3-3.

Table 3-3. Conoseal Flanges, Tubing Joints and Gaskets

Item Location Seal No. No__ Malarial

Tube ,loint Guard Fill/Vent 59190-12SS 2 Cres

Doublc Seal TPS, Baffles 59162-100S 5 Cres Male

Flange Cryoshroud 59161-100A 5 A1 Female

I)ouble Seal Test Tank Fill/Vent* 59162-200S 2 Cres Male

F1,'mge

Single Seal Test Facility 56331-200S 2 Cres Male

I'langc Test Tank Fill/Vent 56332-220S 2 Cres Fem,-de

Ga:__ket** A1 Alloy59307-12A

50887-100A

50887-150A

50887-200A

50887-250A

The mating female flange was machined as a part of the test tank lid.

** All gaskets were Teflon coated before installation.
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TANK PRESSURE CONTROL SYSTEMS

Pressure control devices are required for the test tank and guard tank to mah,tak_ a

constant liquid boiling point.

4.1 TEST TANK PRESSURE CONTROL

The pressure control system shown in Figure 4-1, is used during testing t0 c_troI the

back pressure of the liquid hydrogen test tank. The system is designed to m_AntaJn tlm

test tm_k pressure within ± 1.38 N/m 2 (0. 0002 psi) of the set point. The MKS Baratron,

Differential Capacitance Manometer, Model 145 AH-1 (:_1 mm Hg diff. ) is utiiize¢t l_J

sense very small positive or negative pressure variations in the test tank relative to a

constant reference pressure of a fixed volume of gas, maintained at a constant te.m_,.pera-

ture. The electrical output of the Baratron transducer is fed to the pressure re_g_lattng

valve, Controller, DaM Model C601B, which actuates the Hamlnel-Dalfl vent valves

Model A40A located in the test tank vent line, thereby controlling the pressure t_ the

cyrogenic tank. A brief description of the major components is given in the foll_r#lng

paragraph.

1. Capacitance Manometer MKS Baratron No. 145 AH-1, _1 mm Hg pr(.,_._ure
differential. The MKS Baratron Type 145A capacitance manometer bead is

a tensioned diaphragm pressure/vacuum gauge designed for performL_

highly accurate measurements of gas pressures. It is re.tinted inside a

temperature controlled chamber and attached to a 12000 lb mass bloc}_ to
eliminate vibrations. The MKS Baratron Ilead support plato and

reference pressure container is shown in Figure 4-2.

2o Signal Conditioner, MKS Model 170 M-7A. This type of electronic u_[t

provides excitation to the Ilead, and converts the Head output to a pr_Jortional

DC output of • 10 VDC full scale.

3. Pressure Indicator, MKS Model 170M-26A. This unit is a 12.7 cm (5 fn)

precision mirror scale meter, readout unit, calibrated directly in pressure

units. It has a center-zero meter for reading both positive and negative

pressures •

4. Balance Digital Offset MKS Model 170 M-29. The instrument monitors minute

variations about a fixed pressure that has been applied to the Head.

5. Controller, Dahl Model C-60IB. The C601B is a three mode analog c¢mtroller

which permits full time automatic control. It accepts all standard transmitter

4-1
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Vent
TSI

F] ou-m. e te r

Electro/Pneumatic Gonverter

Mason Nu!lm_ Model 8001

1-5 Mode in, 3-15 psi out

Meter 0-5 Mode

Auto/Manual Switch

Manual Controller

0-5 Mode

!

Flowmeter

Isolation

Valw

Vent Valve

ttaxnmel Dahl

I_ edel A49A-V810

Vent Line

/ x

Line

Controller, Dahl

Model C601B

fi-10 Vdc In, 1-5 Maout

Balance and Digital Offset

'" MKS Model 170 M.29
_. Prc_:_ure b_dicator

.J _ "k'___ Signal Conditioner .

_- Capacitmnce Manometer MKS

_;tron145AH-1, ±lmm hgdiff.

- _ Ice Bath

Reference Pressure

Ullage Volume

Figure 4-1. Customized Multilayer Insulation System Back Pressure Control System Schematic
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6.

7.

8.

9.

and remote set-point signals. Power supply: 105-130 volts, 50/60 Hz,

33 VA maximum.

Hammel-DahI Valve, CV = 0.001, A-40A, V810 DGE 42, P4SGS. This is an

air to open actuator, globe design, 316 S. steel, screwed ends, plain bonnet,

spline trim, with teflon packing valve positioners and hand jack actuator to

close.

Hammel-Dahl Valve, CV=0.01, V810 DGE 42 PWSGS. Same as Spec. No. 6.

TSI Flowmeter. The TSI (Thermo Systemz Inc.) flo_neters which measure

boiloff rates are hot film anemometers.

a. Model 1352-1A measures flowrates between. 000039 - . 00196 g/see

(0. 000312-0. 0156 lb/hr} --.2% accuracy, F.S.

b. Model 1352-2G measures flowmeters between 1.6-46.6 mg/sec (0. 013-

0.37 lb/hr) _2% accuracy, full scale.

c. Model 1352-3G measures flowmeters between 16.4-466.2 rag/see

(0.13-3.7 lb/hr) _2% accuracy F.S.

Reference Pressure Container Ice Bath. The reference pressure container

ice bath (FiTare 4-2) consists of a 15.24 cm (6 in) diameter_ 30.48 (12 in)

long sta.inless steel vessel contah_ing hydrogen gas. This vessel is mounted

within the inner vacuum jacketed dewar, 25.40 cm (10 in) diameter and

45.72 cm (18 in_ deep. The assembly is contained within an outer dewar,

76.2 cm (30 in',, diameter and 72.2 cm (30 in) deep. Both dewars are filled

with ice, covered with foam lids and equipped with tubes to siphon water

away. The reference pressure vessel is connected with the Baratron Head

by a 0. 318 cm (0. 125 in} diameter, 0. 081 cm (0.032 in) wall, 244 cm (96 in)

long stainless steel tube.

4.2 GUARD TANK PRESSURE CONTROL

The NBS barostat device is u_ed to control the pressure of the guard tank. The NBS

barostat was developed by the National Bureau of St_,.dards (NBS), Washington, to

maintain constant tank back pressure with small va_ations in vent gas flow rate. The

bar.star has been used successfully at NASA/MSFC and at Convair on a 2.21 m (87 in)

diameter test tank thermal test program (I_oference 4-1). Convair's experience in

calibration of the unit indicates that pressure control was maintained over a band of

13.8 N/m 2 (_0.002 psi), provided the flow rate does not change more than 94 cm3/sec

(_0.2 scfm).
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Figure 4--3 is a schematic of the NBS barostat. The basic principle of operation of the
unit is balance bet_veen the pressure in the lower cavity and weights suspended from this

bellows assembly. In order in reach equilibrium, the bellows respond to lhe pressure

from the tank and open or close the orifice by moving the ball and phmger assembly.

This plunger is spring loaded to prevent damage to the lapped orifice seat when the

unit closes. The amount of weight placed on the weight platform determines the

pressure at which the unit will control. Tim upper bellows section is evacuated to

provide a constant pressure reference for the controlling bellows that is not affected

by ctmnges in atmospheric pressure. As is noted on the drawing, a vacuum pump is
connected to the barostat outlet port. This is done to ensure a critical pressure ratio

across the orifice over a wide ral_ge of flow rakes.

During testing, the guard tank pressure will be maintained at Iii. 8 kN/m 2 (16.2 psia).

The upper evacuated bellows on the Barostat will be maintained at a pressure of less

than 13.32 N/m 2 (100 microns) during all thermal equilibrium testing.
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5

AUXILIARY HARDWARE

5. 1 FLUID SYSTEM

Figure 5-1 is an overall schematic of the fluid systems required for the thermal test.

Table 5-1 presents each fluid system and the work wlgeh was necessary for the

perform,'mee of tills test.

Table 5-1. Test Apparatus Fluid Systems

Svstem

]. Test Tank LHo Fill

and Drain

2. Test Tank Vent

3. Vacuum System

q. Guard Tank trod TPS

Cooling

5. Cryoshroud and Baffle

Cooling

Fabrication Reouirement

New installation.

New installation.

Existed with the exception of a 10 inch diffusion

fore-pump located between the mechanical ptunps

and the 32 inch diffusion pump.

New installation.

New installation.

The systems for the guard tank, payload simulator, cryoshroud, and baffles were

fabricated _md leak checked before test tank installation. Wcldh_g and silver brazing

was used as the princip_/1 means of joining parts of the system. After assembly and

instalhttion of the test tank a complete section by section leak check was performed.

To assure adequate performance of _he vacuum system during the testing phase, a

total systems leak check was performed. Several leaks wcre fotmd :rod repaired.

No leakage could be measured by the mass spectrometer leak detector.

The fill line for the test tank extends to the bottom of the tank primarily as a safety

measure. Since the fill line is guarded at LH2 temperature, there was no need to

terminate the line hi the ullage space. In an emergency, the tank may be emptied

through the fill line by pressurizing the tank, opening the fill valve, and fo:cing the
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Figure 5-3. 'rest Tank lleater - Attached to Instrtunentatlon Tree
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